

Automated Singlicate Biomarker Assay: Enhancing Assay Performance by Surrogate Matrix Optimization

Florian Bernet

EBF 21-Nov-2024

Surrogate Matrix: Essential for Endogenous Analytes

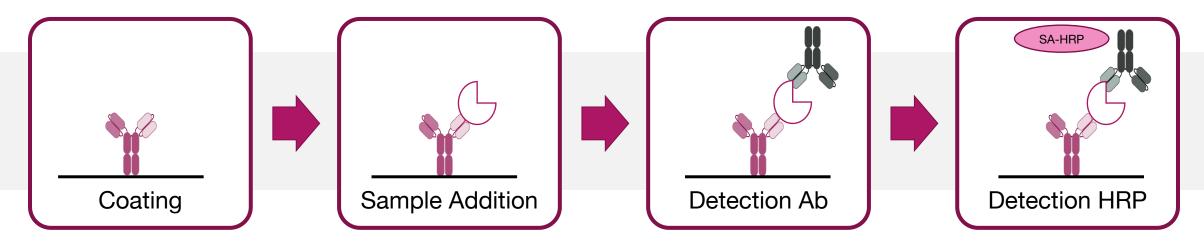
1. Purpose: used preparing calibration standards and/or quality control (QC) samples without the interference of endogenous analytes.

2. Selection: The surrogate matrix should closely mimic the biological matrix in terms of composition and behavior within the assay.

3. Method Development/Validation: demonstrate suitability of the use of surrogate matrix.

Challenge of Choosing the Appropriate Matrix for calibrators and QCs

Surrogate Matrix	Composition	Matrix effect	Lot-to-lot Variation	Adsorption of target	Considerations
Ideal surrogate matrix	Matrix prepared using an anti-target antibody		Х		Availability of anti-target antibodyNot suitable for large volumes
Simple buffer	Buffer containing protein (typically, BSA or Casein)	Х		Х	 Addition of detergents, protease inhibitors etc.
Complex	Commercially available matrix	Х	Х		Assay life-cycle management
surrogate matrix (CSM)	Extracted matrix using charcoal	Х	Х		 Low extraction efficiency for large molecules Does not resemble that of original matrix
	Matrix derived from other species	Х	Х		 No interfering endogenous counterpart present



Case Study: Development of an Exploratory Biomarker ELISA Assay for Detecting Changes in Endogenous Peptide Hormone after Treatment in Human Plasma

Detecting Endogenous Peptide Hormone in Human Plasma

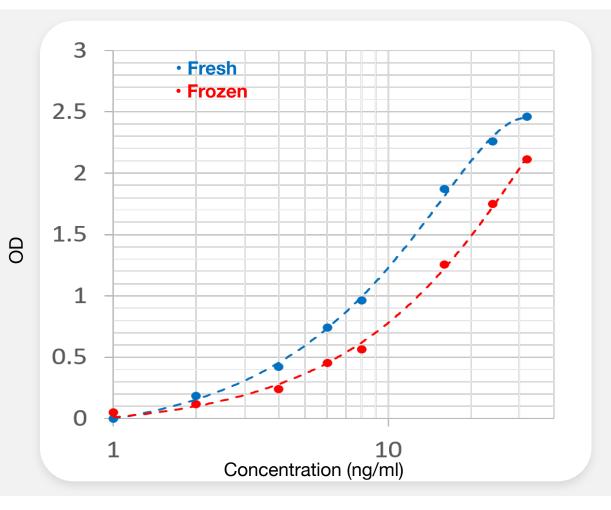
- Format: Direct Sequential ELISA
- Target: 16kDa peptide hormone, low ng/ml concentration in plasma


- Aim: develop an assay based on validated kit that allows for high throughput
 - Automatable
 - Singlicate

Benefits of Assay Automation – High Sample Throughput

Advancements in Fully Automated Sample Analysis Systems

- Increased Throughput
- Enhanced Traceability
- Greater Reliability
- Improved Reproducibility
- Increased Robustness



Initial Buffer Testing for Standard Curve Preparation

Reagent Diluent

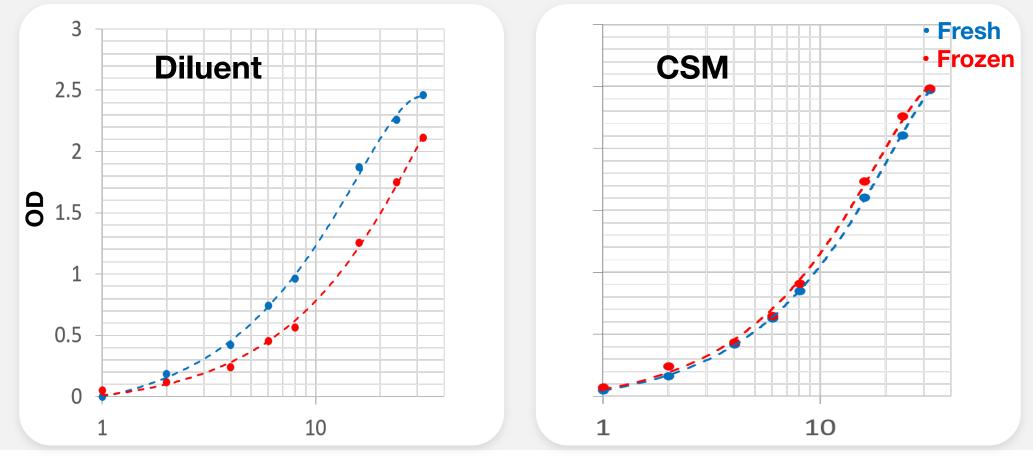
- Freshly prepared and frozen standard curves are not superimposable
- Stability of standards is questionable after freezing at -20°C

Reagent Diluent = PBS +1% BSA

1. Addition of Additives	 Increase BSA concentration Addition of Tween-20 Addition of glycerol Addition of EDTA 	X
	 HEPES PBS 	
	 Storage temperature Heat inactivation 	
	 Test different complex surrogate matrices 	

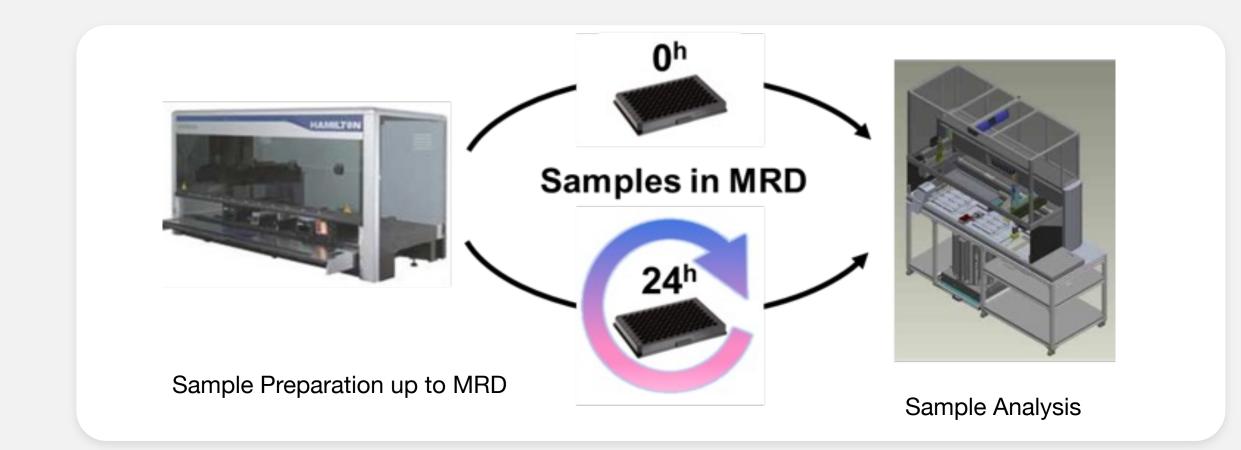
1. Addition of Additives	 Increase BSA concentration Addition of Tween-20 Addition of glycerol to increase viscosity Addition of EDTA to inhibit protease activity 	X
2. Changing buffer system	HEPESPBS	×

1. Addition of Additives	 Increase BSA concentration Addition of Tween-20 Addition of glycerol to increase viscosity Addition of EDTA to inhibit protease activity 	X
2. Changing buffer system	HEPESPBS	X
3. Factors influencing curve	Storage temperatureHeat inactivation	×
	 Test different complex surrogate matrices 	

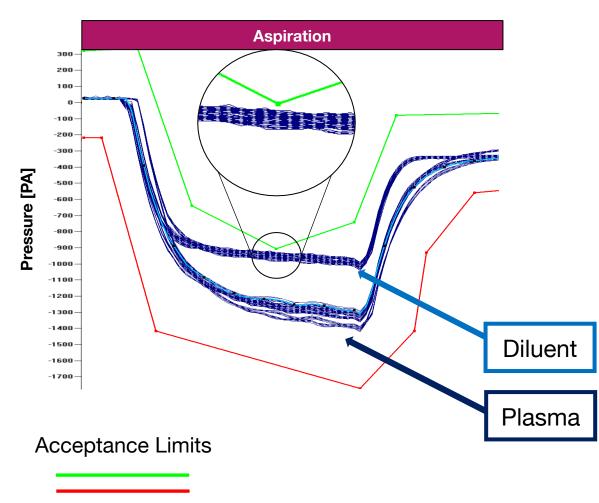


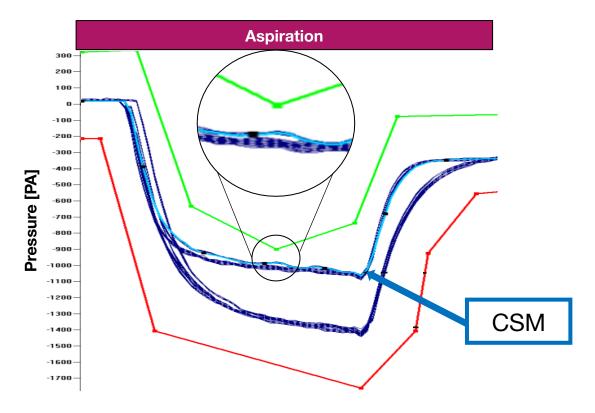
1. Addition of Additives	 Increase BSA concentration Addition of Tween-20 Addition of glycerol to increase viscosity Addition of EDTA to inhibit protease activity 	×
2. Changing buffer system	HEPESPBS	×
3. Factors influencing curve	Storage temperatureHeat inactivation	×
4. Matrix derived from other species	 Test different complex surrogate matrices 	

Resolving Differences by Using a Complex Surrogate Matrix


Behavior of the standard curve before and after optimization of the surrogate matrix

Concentration (ng/mL)


Automated Assay: Eliminating Manual Pipetting



Impact of Varying Viscosity on Robotic Sample Pipetting

• Total Aspiration and Dispense Monitoring (TADM): pipetting steps managed by the Hamilton robot

 5-fold Pre-diluted samples exhibit similar behavior to calibrator in a complex surrogate matrix (CSM)

Proven Suitability of Complex Surrogate Matrix in A&P Runs

	Precision (%CV)	Bias (%)	Total Error (%)
LLOQ	2.3	-7.6	9.9
LQC	1.7	-6.6	8.3
MQC	2.5	-7.9	10.4
HQC	3.1	-5.1	8.1
ULQC	4.4	-8.8	13.2

- Calibrators prepared in complex surrogate matrix
- Endogenous QCs: LQC, MQC and HQC
- Recombinat QCs: LLOQ & ULOQ (surrogate matrix)

Comparable A&P: Automated vs Manual Processing

	Automa	Automated Processed Run			Manually Processed Run			
	Precision (%CV)	Bias (%)	Total Error (%)	Precision (%CV)	Bias (%)	Total Error (%)		
LLOQ	2.3	-7.6	9.9	5.8	-2.9	8.7		
LQC	1.7	-6.6	8.3	4.4	8.5	13.0		
MQC	2.5	-7.9	10.4	2.8	19.4	22.2		
HQC	3.1	-5.1	8.1	2.0	16.9	18.8		
ULOQ	4.4	-8.8	13.2	5.0	4.1	9.1		

- Acceptance Criteria met in both, automated and manual runs
- > ~30% reduction in total error was achieved using the automated system

Validation A&P Data Supportes Singlicate Analysis

- Assessment of validation data conducted in duplicate analysis
- Singlicate results were derived by using the first replicate

	Dup	olicate An	alysis	Singlicate Evaluation			
	Precision (%CV)	Bias (%)	Total Error (%)	Precision (%CV)	Bias (%)	Total Error (%)	
LLOQ	7.8	-3.5	11.3	8.6	-3.4	12.0	
LQC	6.8	-0.9	7.6	8.7	-1.2	9.9	
MQC	10.1	4.0	14.1	12.0	3.2	15.2	
HQC	11.6	0.8	12.5	15.3	0.5	15.8	
ULQC	11.2	-7.8	19.0	22.9	-5.7	28.6	

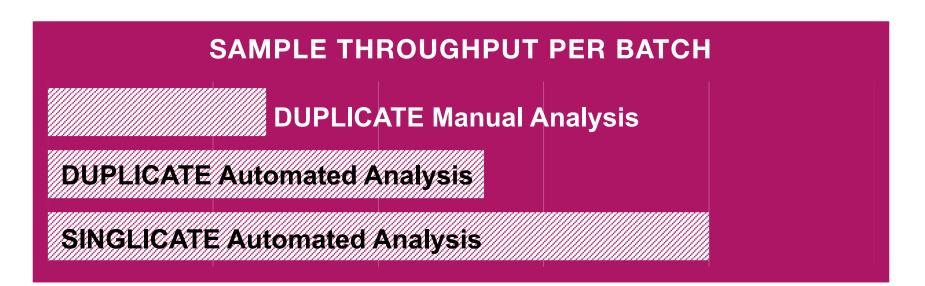
Selectivity Validation Data Supports Singlicate Analysis

Individual	Duplicate Analysis					Singlicate Evaluation				
	- ng/mL	Low S ng/mL	•	Ŭ	Spike %Bias	- ng/mL		Spike %Bias	High ng/mL	Spike %Bias
1	1.22	4.39	4.0	21.7	-6.5	1.2	4.37	4.0	21.6	-6.9
2	2.11	5.15	0.8	24.3	0.8	2.12	5.16	0.8	24.1	0.0
3	1.95	4.53	-8.5	19.6	-18.3	1.92	4.47	-9.1	19.4	-18.8
4	1.95	4.58	-7.5	20.1	-16.3	1.92	4.52	-8.7	20.6	-14.2
5	2.14	4.46	-13.2	18.7	-22.4	2.08	4.54	-10.6	18.1	-24.9
6	2.38	5.37	-0.2	23.1	-5.3	2.35	5.27	-1.5	22.6	-7.4
7	2.09	4.72	-7.3	19.8	-17.8	2.02	4.62	-8.0	19.4	-19.2
8	2.23	4.98	-4.8	22.5	-7.0	2.15	4.93	-4.3	21.9	-9.5
Lipemic	6.67	9.2	-4.9	26.4	-8.0	6.73	9.05	-7.0	27.2	-5.2
Hemolyzed	2.75	5.43	-5.6	21.7	-12.5	2.61	5.25	-6.4	20.6	-16.3
Pool control	3.34	6.01	-5.2	21.7	-14.2	3.31	5.83	-7.6	20.8	-17.8

A&P Assessment Confirm Assay Performance in Full-Throughput Singlicate Runs

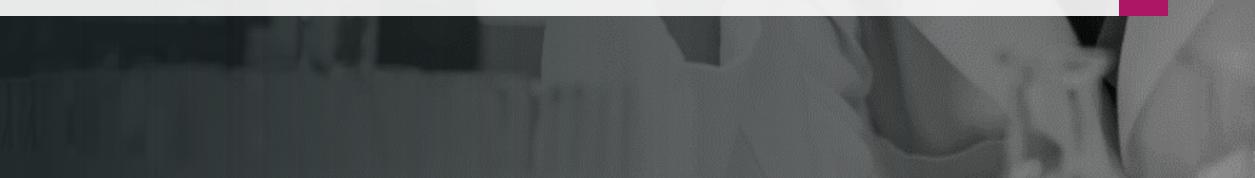
	Sin	Singlicate Analysis							
	Precision (%CV)	Bias (%)	Total Error (%)						
LLOQ	2.6	-3.4	6.0						
LQC	2.3	3.4	5.7						
MQC	2.0	4.1	6.1						
HQC	4.3	-1.7	5.9						
ULQC	6.8	-11.9	18.6						

Batch Size: 5 plates (~400 samples)


Sample Processing Time: Increased compared to manual

✓ Method Suitability Confirmed and Successfully Validated

Summary


- An automated singlicate biomarker ELISA assay has been successfully validated:
 - matrix optimization significantly enhanced assay performance
 - Automation and singlicate analysis offer an opportunity to increase throughput without compromising data quality

Thanks to: Marleen Lutz Rebeca Schibli Elisabeth Friedhoff Lysie Champion Wibke Lembke Petra Struwe

THANK YOU

