TIDES 2013: Course 2

Considerations for Peptide Contract Manufacturing:
Lessons Learned on Outsource Management

Bruce H Morimoto, PhD
Exec Director, Applied Translational Medicine, Celerion
bruce.morimoto@CELERION.COM

May 12, 2013
Disclaimer

The views expressed in this presentation are mine and do not reflect those of my past, present or future employers...
Why Outsource?

- Access to expertise
- Access to capacity
- Compliance (GMP capabilities)
- Cost-effectiveness

 Internal resources versus project requirements
What to Outsource?

Peptide synthesis
- Requires specialized equipment
 - Automated synthesizers
 - Reactors
 - HPLC purification
- Specialized chemistry
 - TFA or HF cleavage
 - Hybrid synthesis

Analytical characterization

Regulatory oversight
When to Outsource?

- **Discovery support: Small scale**
 - Automated synthesizers
 - Lab bench scale
- **Preclinical support: Medium scale**
 - Solid-phase synthesis (specialized equipment)
 - Hybrid synthesis
- **Clinical support: Larger scale**
 - Solid-phase/Hybrid
- **Commercial: Large scale**
 - Solid-phase/Hybrid
 - Solution-phase
The Relationship

Managing expectations

- Sponsor
 - Rapid turnaround
 - High quality
 - Lowest cost

- Contract Manufacturer
 - Need to manage multiple projects
 - Flexible resource allocation
 - Constant flow of work
 - Profit
The Relationship: part 2

Developing trust

- Communication
- No finger-pointing or playing the blame game
- Root-cause investigation
- Corrective action
- Communication
- Communication
- Communication
Effective communication

- Critical in early-stage projects
- Type of information
 - Project updates
 - Issues (set expectations of when)
 - Process changes
- Mechanisms
 - Telephone
 - Email
 - Face-to-face
- Quality-Compliance agreement
- Supply agreement
On-site activities

- Site inspection (tour)
 - Does everything look clean, organized?
 - People?
- Review of SOPs (compliance)
- Meet the team
- Project manager, point-of-contact
- Review batch records
Agreements

Initial stage (discovery, milligrams)
- Quotes-purchase orders
- Quantity and specifications

GMP batches (clinical use)
- Quality agreement
- Development agreement
- Supply agreement

Note: IND/IMPD. Client/sponsor responsible for human safety! Therefore, important to have oversight of manufacturing…
Quality agreements

Primary purpose

To delineate the responsibilities (or joint responsibilities) in the manufacture, testing and release of API for clinical human studies or commerce

Compliance

- cGMP
- SOPs
Elements of a quality agreement

- Responsibilities for review/approval
 - Manufacturing procedures
 - Master batch records
 - In-process, release and stability methods
 - Specifications

- Notifications-approval of changes in
 - Vendors
 - Deviations
 - Out-of-specifications
 - Non-routine findings
Additional agreements

- Process changes
 - How are they documented?
 - Client approval?
 - Impact on toxicology, clinical

- Specification changes
 - Experience with process
 - Feedback from regulatory agencies

- Validations
 - Analytical methods
 - Process
Final Thoughts

- It is all about the relationship!
- Communication is key
- Agreements help define and set expectations
- Contracts are to protect both sides when the relationship falls apart, so plan accordingly
Guide for the elaboration of monographs on synthetic peptides and recombinant DNA proteins

European Pharmacopoeia
European Directorate for the Quality of Medicines & HealthCare

edqm

Edition 2010

4. SYNTHETIC PEPTIDES ... 9
 4.1. DEFINITION .. 9
 4.2. CHARACTERS .. 9
 4.3. IDENTIFICATION ... 10
 4.3.1. General considerations ... 10
 4.4. TESTS .. 10
 4.4.1. Related peptides .. 10
 4.4.2. Optical rotation and absorbance 11
 4.4.3. Acetic acid, loss on drying, water content 11
 4.4.4. Tests for bacterial endotoxins/pyrogens 11
 4.5. ASSAY .. 11

http://www.edqm.eu/
Published but withdrawn in 2004
Withdrawn FDA Guidance

TABLE OF CONTENTS

I. INTRODUCTION ... 1
II. DESCRIPTION AND CHARACTERIZATION 2
 A. Description .. 2
 B. Characterization/Proof of Structure 2
III. SYNTHESIS/METHOD OF MANUFACTURE 4
 A. Starting Materials .. 4
 1. Amino Acids and Derivatives 4
 2. Resins Used for Peptide Synthesis 4
 3. Chemical Reagents and Solvents 5
 B. Flow Chart of Synthesis 5
 1. Solution-Phase Synthesis 5
 2. Solid-Phase Synthesis 5
 C. Detailed Description of Synthesis 5
 1. Solution-Phase Synthesis 5
 2. Solid-Phase Synthesis 6
 3. Modification of the Completed Peptide 7
 D. Purification of the Peptide 7
 1. Purification Strategy 7
 2. Description of the Purification Process 7
 3. Drying of Purified Drug Substance 8
IV. PROCESS CONTROLS ... 8

A. Reaction Completion ... 8
 1. Solution-Phase Synthesis 8
 2. Solid Phase Synthesis 8
 3. Disulfide Linkage .. 8
 B. Intermediate Specifications and Tests 9
 C. Column Performance .. 9
 D. Removal of Solvents and Reagents 9
V. REFERENCE STANDARD ... 9
VI. SPECIFICATIONS/ANALYTICAL METHODS 11
VII. CONTAINER-CLOSURE SYSTEM 11
VIII. STABILITY ... 12
<table>
<thead>
<tr>
<th>TRANSMISSION TO CPMP</th>
<th>September 1997</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSMISSION TO INTERESTED PARTIES</td>
<td>September 1997</td>
</tr>
<tr>
<td>DEADLINE FOR COMMENTS</td>
<td>March 1998</td>
</tr>
<tr>
<td>FINAL APPROVAL BY CPMP</td>
<td>November 1999</td>
</tr>
<tr>
<td>DATE FOR COMING INTO OPERATION</td>
<td>May 2000</td>
</tr>
</tbody>
</table>

Not peptide specific, but useful guidance

http://www.ema.europa.eu/
Quality specifications for peptide drugs: a regulatory-pharmaceutical approach

Valentijn Vergote, Christian Burvenich, Christophe Van de Wiele and Bart De Spiegeleer

Peptid drugs, as all types of pharmaceuticals, require adequate specifications (i.e. quality attributes, procedures and acceptance criteria) as part of their quality assurance to ensure the safety and efficacy of drug substances (i.e. active pharmaceutical ingredients) and drug products (i.e. finished pharmaceutical dosage forms). Compendial monographs are updated regularly to keep up with the most recent advances in peptide synthesis (e.g. reduced by-products) and analytical technology. Nevertheless, currently applied pharmacopoeial peptide specifications are barely harmonized yet (e.g. large differences between the European Pharmacopoeia and the United States Pharmacopoeia), increasing the manufacturers’ burden of performing analytical procedures in different ways, using different acceptance criteria. Additionally, the peptide monographs are not always consistent within a single pharmacopoeia. In this review, we highlight the main differences and similarities in compendial peptide specifications (including identification, purity and assay). Based on comparison, and together with additional information from peptide drug substance manufacturers and public evaluation reports on registration files of non-pharmacopoeial peptide drugs, a consistent monograph structure is proposed. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.

Keywords: peptide drug substance; quality attributes; acceptance criteria; regulatory affairs; ICH guidelines; Ph. Eur. and USP pharmacopoeial monographs; related substances thresholds
QUESTIONS?