Solving Challenges Faced in Early Clinical Development

J. Fred Pritchard, Ph.D.
June 5, 2013
The Pressure is On for Proof-of-Concept!

- Increase in novel new drugs from discovery research
- More difficult disease states to study and treat
- Greater regulatory expectations on clinical trials
- Increased cost of clinical research
- Need for more informed decisions at clinical proof-of-concept
- Regulatory acceptance of adaptive-like study designs

Innovation

- Expanding universe of new technology applications
New Technology Drives Innovation
So Many New Tools in So Little Time
Understanding Relevance of Preclinical Signals Early in Clinical Development

Focus of Presentation

- Examples of common and uncommon problems faced by drug developers early in clinical development.
- How to leverage new technologies to provide early answers to tough questions
Troublesome Problems Encountered in Early Clinical Research

- **Safety**
 - Positive or equivocal signals in preclinical safety assessment
 - Common – hERG signals
 - Less Common – liver injury signs
 - Uncommon – testicular toxicity

- **PK / Metabolism**
 - Drugs with potentially poor absorption or unknown hepatic first-pass metabolism
 - Active metabolites, species-unique metabolites, or disproportionate human vs. tox species metabolite(s).

- **PD**
 - Establishing if drug gets to site of action and actually works as designed

High definition digital ECG collection and analysis

Assessment of drug induced liver injury (DILI)

Testicular biomarkers - semen collection/analysis

Use of microtracers with Accelerator Mass Spectrometry

Efficacy/Mechanism biomarkers
QT Prolongation
QT Safety Biomarkers

- Nonclinical risk assessment:
 - In vitro IKr
 - In vivo QT

 Ref: ICH S7B

- Clinical risk assessment:
 - ECGs in Phase I - II
 - Thorough QT/QTc study

 Ref: ICH E14
Comparing ECG Acquisition Modalities

<table>
<thead>
<tr>
<th></th>
<th>Stand alone 12 Lead</th>
<th>Standard Holter</th>
<th>Telemetry System</th>
<th>Blue-tooth Holter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous ECG Collection</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Retrospective data collection</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>View Safety ECG</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Data capture out of range</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Transportable</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>
Digital ECG Reading Enables Overlay of Lead Signals for Better Accuracy in Measurement of Intervals
ECG Extraction: Find a Period of Stable Heart Rate and Reduced Noise

Accurate QTc require a stable preceding heart rate
Antares Optimal ECG Extraction: Decreases Variability

Searching for best extraction, noise and HR stability criteria…

Second extraction
Nominal Timepoint
Third extraction
Best ECG! First extraction

F Badilini, Vaglio, Sarapa, A.N.E 2009;14(Supp1):22-29

Applied Translational Medicine
Better data, faster, cheaper
Drug Induced Liver Injury
Regulatory Action on Marketed Drugs due to DILI (1995-2010)**

Partial List

<table>
<thead>
<tr>
<th>Withdrawals (US* &/or other countries+)</th>
<th>Boxed Warnings (US)</th>
</tr>
</thead>
<tbody>
<tr>
<td>troglitazone*</td>
<td>lamivudine</td>
</tr>
<tr>
<td>bromfenac*</td>
<td>leflunomide</td>
</tr>
<tr>
<td>trovofloxacin*</td>
<td>propylthiouracil</td>
</tr>
<tr>
<td>tilbroquinol+</td>
<td>lapatanib</td>
</tr>
<tr>
<td>pemoline+</td>
<td>pazopanib</td>
</tr>
<tr>
<td>tetrabamate+</td>
<td>sunitimib</td>
</tr>
<tr>
<td>ebrotidine+</td>
<td>tenofovir</td>
</tr>
<tr>
<td>nefazodone+</td>
<td>tipranavir</td>
</tr>
<tr>
<td>tolrestat+</td>
<td>tolcapone</td>
</tr>
<tr>
<td>droxicam+</td>
<td>bosentan</td>
</tr>
<tr>
<td>niperotidine+</td>
<td>deferasirox</td>
</tr>
<tr>
<td>chlormezanone+</td>
<td>ambrisentan</td>
</tr>
<tr>
<td>ximelegatran+</td>
<td>acitretin</td>
</tr>
<tr>
<td>lumaricoxib+</td>
<td>cytarabine</td>
</tr>
<tr>
<td>gemtuzumab+</td>
<td>maraviroc</td>
</tr>
</tbody>
</table>

Restricted (US)

<table>
<thead>
<tr>
<th>trovofloxacin</th>
<th>eltrombopa</th>
</tr>
</thead>
<tbody>
<tr>
<td>felbamate</td>
<td>acetaminophen (Rx)</td>
</tr>
<tr>
<td>pemoline</td>
<td></td>
</tr>
</tbody>
</table>

FDA/C-Path/PhRMA HepTox Steering Committee, 15 March 2012
Drug-Induced Liver Injury Biomarkers

- Classic serum chemistry tests include total bilirubin (TBL) and enzyme activities of ALP, AST and ALT.
 - “Validated” by more than 60 years of clinical use
 - Serum enzyme activity are NOT tests of liver function
 - TBL and prothrombin time ARE tests of liver function
 - ALT high sensitivity; TBL high specificity

- Problems:
 - Don’t discriminate between drug and non-drug etiologies
 - Are not early predictors of DILI outcomes
 - Resolvable versus serious acceleration of injury
 - Normal ranges not agreed upon
Drug-Induced Liver Injury Biomarkers

- There is a need for DILI biomarkers to predict
 - Clinical resolution vs progression at an early stage of mild liver injury
 - Which drugs can cause idiosyncratic DILI
 - Which patients are susceptible to develop DILI

From Mark Avigan, CDER, FDA, presentation at FDA/C-Path/PhRMA HepTox Steering Committee Meeting, 15 March 2012
Liver-enriched microRNAs were shown to be promising serum biomarkers of acetaminophen-induced acute liver injury in mice\(^1\) and humans\(^2\).

- miR-122 and miR-192 were detected earlier than ALT and at lower doses.
- miR-122 had improved liver tissue specificity vs ALT.
- There is a high degree of cross-species conservation of microRNA sequences.

\(^1\)Wang K et al. Proc Natl Acad Sci USA 106: 4402-4407 (2009)
Other Exploratory Biomarkers of DILI Currently under Investigation

- Albumin mRNA
- α-glutathione S-transferase
- High-mobility group box 1
- Cytokeratin 18
- Glutamate dehydrogenase
- Sorbitol dehydrogenase
- F-protein
Assessing Potential for Testicular Toxicity in Men
Male Reproductive Safety – Preclinical Evaluation

- Preclinical toxicology studies may demonstrate testicular histopathological abnormalities in one species or in multiple species at high doses.
 - Histopathological changes – degeneration of spermatocytes, dilation of seminiferous tubules
 - Decrease in fertility, spermatagonia, increase in abnormal sperm in rodent reproductive toxicology studies
- There is no single species that is best for prediction of human risk.
- Abnormalities in any species may be a cause for regulatory concern leading to clinical holds.
Testis is a Dual Organ in Function and Structure

Interstitial Compartment
- Endocrine Function
- Leydig cell
- Low metabolic rate
- Fibroblast stem cells
- Resistant to toxicity
- Functional serum biomarkers are testosterone and LH

Seminiferous Compartment
- Exocrine Function
- Sertoli and germ cells
- Active turnover rate
- Spermatogonial stem cells
- Exquisitely sensitive to toxicity
- Functional serum biomarker is FSH (highly variable) and Inhibin B (needs further clinical validation)

Semen analysis still best choice to evaluate effects on sperm production despite challenges in collecting good samples
Strategy for Assessing Testicular Safety in Men

- Conduct Phase I multiple dose safety/PK study in a healthy volunteer population of vasectomized males and postmenopausal women.
 - Data used to select dose for testicular safety study, ensuring adequate safety margins.
- Conduct study in healthy men after single dose or short term treatment where a “responder” is defined as someone who has >50% reduction in sperm concentration from baseline.
 - Needs to cover at least 90 days after dosing – full spermatogenesis cycle (e.g. semen collections at baseline - predose, 65 days, 95 days, 125 days after dosing)
 - Power study to test non-inferiority (no increase in number of responders in treated group compared to placebo-treated group) – usually 100-150 participants
Strategy for Assessing Testicular Safety in Men

- Primary Endpoint
 - Concentration of viable sperm in semen

- Secondary Endpoints
 - Sperm motility in semen
 - LH, FSH, testosterone and Inhibin B in serum at timepoints shortly after drug dosing and at periods of semen sampling

- Controlling variability is critical to obtain statistical valid results
 - Limit number of sites (ideal one or two)
 - Limit number of laboratories doing sperm testing (ideal just one with same team that sets up at clinical site during sampling periods)
 - Multiple samples per time period (ideal is 3 over 24 hours after 48 hour abstinence)
Use of Accelerator Mass Spectrometry
Accelerator Mass Spectrometry

- Measures isotope ratios – can detect ultra low levels of 14C radioactivity
- Technology used in carbon dating of antiquities
- First biological application in 1989

Applications in Pharmaceutical Research (since 1998)

Preclinical: Special bioanalysis (proteins, monoclonal antibodies, interfering RNA); Phase 0 (subtherapeutic dose) clinical studies

Early Clinical: MIST (Metabolism in Safety Testing) solution, metabolic profiling, absolute bioavailability

Clinical: Bioanalysis of high potency drugs
Isotopic Tracers: Determination of Absolute Bioavailability (F)

- Oral dose
- IV dose (labelled)
- Blood samples over time
- LC-MS measures total drug
 - Providing the 14C-drug concentration is very small this = oral dose
- HPLC-AMS measures 14C-drug
 - This = IV dose

$$F = \frac{AUC_{po}}{AUC_{iv}} \times \frac{Dose_{iv}}{Dose_{po}}$$
When AMS Provides Enriched Data?

- Poor or variable bioavailability
 - Is absolute bioavailability too low?
 - Is it influenced by formulation?
 - Role of gut absorption/metabolism vs. hepatic metabolism and efflux
- Different metabolic profiles between species used in toxicology
 - Which species reflect human metabolic profile qualitatively and quantitatively?
- Exposure in tissues
 - Cerebral spinal fluid (CSF) exposure for CNS-acting drugs?
 - Systemic exposure for dermal, inhaled, optical, etc. drug delivery
- High potency drugs
 - Ultra-low concentration measurements

Applied Translational Medicine
Better data, earlier and cheaper
Use of Mechanism/Efficacy Biomarkers in Early Clinical Development
Plethora of Biomarkers for Diabetes

- Glucose
- Fatty Acids
- C-Peptide
- TGs
- Glucagon
- Insulin
- HbA1c
- Adiponectin
- TCF7L2
- PPARγ (glitazones)
- KCNJ11
- Gastric Emptying
- CRP
- TNF-α
- IL-6
- IGF
- IGFBP
- GIP
- GLP-1
- OCT1 (metformin)
- OCT2 (metformin)
- DPP4
- Adiponectin
- TNF-α
- IL-6
SAD Study of a Novel DPP-4 Inhibitor in Mild Diabetic Patients

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Patients</th>
<th>Treatment Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P1</td>
</tr>
<tr>
<td>1</td>
<td>N = 5</td>
<td>PLA</td>
</tr>
<tr>
<td>2</td>
<td>N = 5</td>
<td>25 mg</td>
</tr>
<tr>
<td>3</td>
<td>N = 5</td>
<td>25 mg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Patients</th>
<th>Treatment Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P’1</td>
</tr>
<tr>
<td>4</td>
<td>N = 5</td>
<td>PLA</td>
</tr>
<tr>
<td>5</td>
<td>N = 5</td>
<td>50 mg</td>
</tr>
<tr>
<td>6</td>
<td>N = 5</td>
<td>50 mg</td>
</tr>
</tbody>
</table>
Results of SAD Study in Mild Diabetic Patients: Early Evidence of Efficacy

Drug Plasma Concentration

F=4-8%

Percent DPP-IV Inhibition

GLP-1 Concentration

Good Activity

Glucose Concentration
Takeaways

- Solutions to Troublesome Problems in Early Clinical Development
 - New technologies, properly applied
 - Creative study designs – answer more questions in each study
 - Focus on reducing variability in key indicators of safety and efficacy

Applied Translational Medicine
Better data, earlier and cheaper
Solving Challenges Faced in Early Clinical Development

J. Fred Pritchard, Ph.D.
June 5, 2013