Trials and Tribulations for an Intranasal Peptide: Davunetide, lessons learned

February 25, 2014
Bruce Morimoto, PhD
Executive Director, Applied Translational Medicine
Davunetide Discovery

Disease → Injury

Glial-derived neuroprotectants

Activity Dependent Neuroprotective Protein (ADNP)

Davunetide
NAPVSIPQ peptide
AL-108, AL-208

J. Neurochem. 1999; 72, 1283-1293
CNS Drug Rev. 2005; 11(4):353-68
Pharmacol Ther. 2007; 114(2): 146-154
J. Biol. Chem. 2007; 282: 34448-34456
ADNP is a Natural Neuroprotectant

- Essential for brain development
- Synthesized in response to injury
- Important in learning and memory
- Neuronal expression (cerebellum, mesencephalon, pons, medullar oblongata)
- Cytoplasmic & axonal localization
- Heterozygous animals (ADNP +/-): memory impaired
- Davunetide ameliorates impairment
Fundamental Mechanism of Action

Microtubules
Essential for neuronal structure and function

Neurodegeneration
- Destabilization and breakdown of microtubules
- Tau hyperphosphorylation
- Progressive loss of function
- Leads to cell death

Neuroprotection
- *Davunetide* crosses the human blood brain barrier
- Reduces Tau hyperphosphorylation
- Stabilize and repair microtubules
- Restore neuronal structure and function
Summary of Davunetide Pharmacology

Neuroprotection

- Davunetide promotes neuronal survival against a variety of insults including:
 - Excitotoxicity
 - Glucose deprivation
 - Oxidative stress
 - MPP+
 - Microtubule poisons

Microtubule stabilization

- Davunetide stabilizes microtubules and protects the organization of the cytoskeleton

 J Biol Chem. 2004; 279:28531-8

Reduction of tau Phosphorylation

- Davunetide reduces tau phosphorylation in the triple transgenic AD model (PS1M146V, APPSWE, and tauP301L)

 *J. Mol. Neurosci. 2007; 31: 165-170
 JPET, 2008; 325:146-53*
Clinical Development

P/C & Phase I
- Safety/PK Studies
- Safety to 60 mg/day
- CSF penetration
- Brain via systemic distribution
- Healthy/aged, AD, FTD
- 35 P/C studies in 17 models

Pllα – Mild Cognitive Impairment
- 144 participants
- 2 doses (5 mg QD, 15 mg BID)
- 12 weeks
- Randomized, placebo controlled, double blind
- 17 US sites

Pllα – Schizophrenia
- 63 participants
- 2 doses (5 mg QD, 15 mg BID)
- 12 weeks
- Randomized, placebo controlled double blind
- 7 US sites

Pllα – Schizophrenia Imaging Biomarker
- 18 participants
- 2 doses (5 mg QD, 15 mg BID)
- 12 weeks
- Randomized, placebo controlled double blind
- 3 US sites

Pll/III Pivotal Study
- Progressive Supranuclear Palsy
- Tau pathology
- Rapid decline
- No effective treatment
- Validated rating scale
- Powered as a pivotal study
Progressive Supranuclear Palsy (PSP)

- A degenerative disease involving the brain stem, basal ganglia, cerebellum
- Clinical symptoms (movement problems, cognitive impairment) apparent result of the underlying tau pathology in the brain region controlling those functions

Williams and Lees; Lancet Neurol 2009; 8: 270–79
Why PSP?

- Early-onset dementia characterized by tau pathology
- No available treatment
- Significant future potential in other sub-types of frontotemporal dementia and Alzheimer disease

- US Orphan granted (20,000 patients)
 EU Orphan granted (50,000 patients)
- Fast Track granted by FDA
- Appears to meet criteria for single study approval
- Phase II/III study powered as a pivotal study
PSP Study Design

- Phase II/III study in PSP
 - Recruited 313 patients
 - 1:1 active-to-placebo
 - Treated for 1 year
 - 47 clinical sites in US, Canada, Australia, Germany, UK and France

- Clinical Endpoints
 - Safety (adverse events, con meds)
 - Efficacy (disease severity, daily living, cognitive, mood)
 - Volumetric MRI
 - CSF biomarkers
 - DNA (tau genotype)

- Study unblinded in Dec 2012. Active, no different from placebo on any endpoint
- Valid study: PSP disease progression over 12 M as expected
Why Negative Results?

- PSP patient pathology too advanced?
 - Patients have established pathology, not possible to intervene
 - Clinical instruments not sensitive to detect drug effect

- Right dose? Sufficient drug exposure?
 - Marker for target engagement
 - Ability to verify mechanism of action
 - PSP study used single strength (30 mg BID)
Retrospective Risk-Mitigation

- Run pilot PSP study (Phase II)
 - Multiple doses (dose-response)
 - Biomarker intensive
 - Note: post-hoc analysis of the Phase II/III data suggests correlation between MRI, CSF and sub-scales of PSP-RS
 - More intensive PK/PD
General Lessons Learned

Manufacturing Scale-up

Cost-of-Goods
Solid-phase Scale-up

- IND submission
- Chronic tox/Phase II
- Pivotal Phase II/III
Projections

- PSP market (US)
 - Orphan indication
 (prevalence ~6.5 per 100,000)
 - 60 mg daily dose
 - Need ~150 kilograms (at launch)
 - ~500 kilograms per annum (at peak sales)
Solid-Phase Manufacturing

- Existing solid-phase synthesis (10 kg batch size):
 - 3 x 3.3 kg synthesis, pool crude peptide, HPLC purify, batch lyophilization
 - “Sufficient” for product launch for orphan indication
- Would require 10-15 batches per year
- Within existing capacity of CMO at single site
- Challenge: to get to 500 kg/annum to support peak sales (3-4 years post-approval) as well as follow-on product approval in other indications (like AD)
Need to rapidly bridge to additional solid-phase capacity (second supplier) or explore liquid-phase synthesis
Cost: Solid-Phase Synthesis

Cost at gram scale synthesis

Target commercial scale: 0.15-0.2
Cost-Scale Considerations

- Solid-Phase
 - 0.15-0.2 relative cost

- Solution-Phase
 - Cost of initial development
 - Impurity profile
 - 0.035-0.05 relative cost
 - Dramatic reduction in cost (3- to 6-fold)
Davunetide: Solution-Phase Strategy

Condensation Segments and Building Blocks:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Boc-Asn-OH</td>
<td>Fmoc-Val-Ser(ψpro)-OH</td>
</tr>
<tr>
<td>H-Ala-Pro-OH</td>
<td>Z-Ile-Pro-OH</td>
</tr>
</tbody>
</table>
Solution-Phase Considerations

- Minimize Racemization/Epimerization Impurities by
 - Synthesize dipeptide building blocks from Boc-, Z- or Fmoc-protected single amino acids
 - Isolate and purify resulting condensation segments
 - Segment condensation only with di- and tripeptides containing proline or pseudoproline at the C-terminus
Synthetic Scheme I

Z-Ile-OH + H-Pro-OH → Z-Ile-Pro-OH + H-Gln-OtBu

Z-Ile-Pro-Gln-OtBu

Fmoc-Val-Ser(ψpro)-OH + H-Ile-Pro-Gln-OtBu

Fmoc-Val-Ser(ψpro)-Ile-Pro-Gln-OtBu

H-Val-Ser(ψpro)-Ile-Pro-Gln-OtBu
Synthetic Scheme II

\[
\begin{align*}
\text{Z-Ala-Pro-OH} & \quad + \quad \text{H-Val-Ser(\psi pro)-Ile-Pro-Gln-OtBu} & \quad (\text{From Scheme I}) \\
\downarrow & & \downarrow \\
\text{Z-Ala-Pro-Val-Ser(\psi pro)-Ile-Pro-Gln-OtBu} & & \downarrow \\
\downarrow & & \downarrow \\
\text{Boc-Asn-OH} & \quad + \quad \text{H-Ala-Pro-Val-Ser(\psi pro)-Ile-Pro-Gln-OtBu} & & \downarrow \\
\downarrow & & \downarrow \\
\text{Boc-Asn-Ala-Pro-Val-Ser(\psi pro)-Ile-Pro-Gln-OtBu} & & \downarrow \\
\downarrow & & \downarrow \\
\text{H-Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln-OH} & & \\
\end{align*}
\]
HPLC analysis: Purity profile
Solution-Phase Conclusions

- Yield better than anticipated
- Revised relative-cost: 0.01-0.02
- Process still needs optimization
Lessons Learned

- Important to integrate manufacturing plans into
 - Sales and marketing
 - Target population change from AD to PSP
 - 1.2 mil patients versus 70,000
 - Clinical Development
 - Dose change from 5 mg to 60 mg
 - Significant increase (12-fold)
Acknowledgements and Thanks

- Bachem (Torrance, CA USA)
- Corden Pharma Switzerland

- CMC advisors
 - William (Bill) Bennett
 - Randy Lane (Cato)

- Former colleagues at Allon Therapeutics
 - Daniela Nenciu
 - Catherine Campbell
Questions?

bruce.morimoto@celerion.com