Assessing Safety Risk in Early Clinical Studies: Science or Art?

J. Fred Pritchard, PhD
Vice President, Global Drug Development
Questions

- How is early clinical research changing?
- How good are we in predicting safety for early clinical research and ultimately for marketed drugs?
  - Focus on role of safety biomarkers (Malle’s interest)
  - No focus on CNS safety testing (no time)
- What are some recent examples of addressing the relevance of preclinical toxicology findings in early clinical studies?
  - Cardiac safety
  - Testicular toxicity
- What are important areas for future innovation in establishing the safety of new drug candidates in early studies in humans?
Changing Paradigm

Traditional Paradigm: Phased Approach

- Scarcity of molecules from discovery
- Pre-Clinical
- Phase I
- Phase II
- Phase IIb
- Phase III
- Test each scarce molecule thoroughly

Emerging Paradigm: POC / Confirmation Approach

- Abundance of molecules from discovery
- Learn
- Decide
- Confirm
- Pre-Clinical
- Proof of Concept
- Confirmation
- Regional and Ethnic Differences
- Translational Medicine

# Major Reasons for Drug Attrition

<table>
<thead>
<tr>
<th>Phase</th>
<th>Non-clinical</th>
<th>Phase I</th>
<th>Phase I-III</th>
<th>Phase III/Post-approval</th>
<th>Post-approval</th>
<th>Post-approval</th>
<th>Post-approval</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Information</strong></td>
<td>Causes of attrition</td>
<td>Serious ADRs</td>
<td>Causes of attrition</td>
<td>ADRs on label</td>
<td>Serious ADRs</td>
<td>Withdrawal from sale</td>
<td>Withdrawal from sale</td>
</tr>
<tr>
<td><strong>Sample Size</strong></td>
<td>88 CDs stopped</td>
<td>1,015 subjects stopped</td>
<td>82 CDs stopped</td>
<td>1,138 drugs</td>
<td>21,298 patients</td>
<td>121 drugs</td>
<td>47 drugs</td>
</tr>
<tr>
<td><strong>Cardiovascular</strong></td>
<td>27%</td>
<td>9%</td>
<td>21%</td>
<td>36%</td>
<td>15%</td>
<td>9%</td>
<td>45%</td>
</tr>
<tr>
<td><strong>Hepatotoxicity</strong></td>
<td>8%</td>
<td>7%</td>
<td>21%</td>
<td>13%</td>
<td>0%</td>
<td>26%</td>
<td>32%</td>
</tr>
</tbody>
</table>

Objectives of First-in-Human (FIH) studies:

- Establish if drug elicits acute, treatment-limiting adverse events
- Define ADME properties
- Identify influences for future patient exposure

Preclinical information used to:

- Justify why humans should receive drug based on pharmacology
- Determine “maximum recommended starting dose (MRSD) and dose escalation strategy based on the no-observed-adverse-effect-level and human equivalent dose calculations from most sensitive tox species
- Identify potential target organs of acute and chronic toxicity – potential sensitive biomarkers of effect
- Understand relationship between systemic exposure and dose based on toxicokinetic data.
- Predict potential for drug-drug interactions
Definition of a Biomarker

“a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes or pharmacological responses to a therapeutic invention”


First Diagnostic Biomarker?

Sushruta (clinician in India, 600 B.C.)
Recorded that urine of diabetic patients attracted ants

= Diagnostic biomarker for diabetes
## Safety Biomarkers

<table>
<thead>
<tr>
<th></th>
<th>Preclinical</th>
<th>Clinical</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac Rhythm</td>
<td>In vitro $I_{kr}$</td>
<td>ECGs in FIH/FIP Thorough QTc Study (ICH E14)</td>
<td>Robust ECGs in FIH (\rightarrow) waiver of TQT?</td>
</tr>
<tr>
<td></td>
<td>In vivo QTc (ICH S7B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocardial Injury</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute renal tubular injury</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute glomerular and renal tubular injury affecting reabsorption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver Injury</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testicular Toxicity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evolution of ECG Assessment

1902 – First published ECG

1971 – Early Holter Monitor

2011 – Digital Bluetooth Holter Monitor

High definition digital analysis (accurate and fast)
**EAD’s - Mechanism**

*Figure 9.* Mechanism of EAD formation & initiation of Torsade de pointes. Drug-induced blockade of the HERG channel reduces IKr amplitude, which in turn reduces net outward current during the plateau, and prolongation of the ventricular APD and QT interval in the ECG (green). If net inward currents during phase 3 become larger than outward currents, this can form an EAD (blue). These changes are typically heterogeneous and can create a substrate for producing triggered beats in multiple locations, resulting in a multifocal ventricular tachycardia. (Adapted from Kannankeril et al, 2010).
Quinine—”Positive” Drug

Darpo et al. CP&T 97:326-335 (2015)
QT Safety Challenges Remaining

- Discrepancies between non-clinical assays and clinical outcome
  - **False positives** - hERG blockers which are antiarrhythmic (Verapamil, Vanoxirene, Amiodarone)
  - **False negatives** - L-type Ca^{++}/late Na^{+} blockade, abnormal trafficking leading to proarrhythmia/TdP
- Metabolites, other ion channels
- QT measurement – variable methodology
- QT interval shortening

hERG – human Ether-a-go-go Related Gene

---

**Comprehensive In Vitro Pro-arrhythmia Assay (CiPA) Initiative**
- Ion channel
  - Perform comprehensive tests (hERG plus 3 to 6 additional cardiac channels)
- Stem cell-derived human cardiomyocytes
- In silico modeling
- Objective – Update ICH S7B
## Safety Biomarkers

<table>
<thead>
<tr>
<th></th>
<th>Preclinical</th>
<th>Clinical</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cardiac Rhythm</strong></td>
<td>In vitro $I_{k_r}$</td>
<td>ECGs in FIH/FIP Thorough QTc Study (ICH E14)</td>
<td>Robust ECGs in FIH → waiver of TQT?</td>
</tr>
<tr>
<td></td>
<td><em>In vivo QTc (ICH S7B)</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Myocardial Injury</strong></td>
<td><strong>Histology</strong> cTnT, cTnI (dog, rat)</td>
<td>Cardiac tropinin (cTn)</td>
<td>LDH and CK lack specificity, sensitivity</td>
</tr>
<tr>
<td><strong>Acute renal tubular injury</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Acute glomerular and renal tubular injury affecting reabsorption</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Liver Injury</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Testicular Toxicity</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dramatic Example – HCV Drugs in Early Clinical Development

- **August 24, 2012**
  - Clinical testing of BMS-986094, a nucleotide polymerase inhibitor, was suspended after one study subject died of heart failure and 8 others were hospitalized due to heart and kidney toxicity. Preclinical evidence of toxicity at high exposures in animals but biomarker indicators were seen in preclinical studies not seen in clinic

- **August 27, 2012**
  - Partial clinical hold already on Phase IIb drug IDX184; clinical hold put on preclinical drug IDX19368. Both are nucleotide polymerase inhibitors which share the same active metabolite as BMS-986094

- **September 24, 2014**
  - Retrospective analysis showed evidence of cardiotoxicity in 14 of 34 patients enrolled in BMS-986094 Phase II study
<table>
<thead>
<tr>
<th>Safety Biomarkers</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Preclinical</strong></td>
</tr>
</tbody>
</table>
| Cardiac Rhythm | In vitro \( I_{K_r} \)  
In vivo QTc (ICH S7B) | ECGs in FIH/FIP  
Thorough QTc Study (ICH E14) | Robust ECGs in FIH → waiver of TQT? |
| Myocardial Injury | Histology cTnT, cTnI  
(dog, rat) | Cardiac tropinin (cTn) | LDH and CK lack specificity, sensitivity |
| Acute renal tubular injury | Histology, KIM-1, clusterin, albumin, trefoil-factor 3 | Preclinical markers require validation in clinic | BUN and creatinine clearance lack specificity, sensitivity for early nephrotic damage |
| Acute glomerular and renal tubular injury affecting reabsorption | Histology, total protein, cystatin-C  
B2-microglobulin, RPA-1 (rats) |  |  |
<p>| Liver Injury |  |  |  |
| Testicular Toxicity |  |  |  |</p>
<table>
<thead>
<tr>
<th></th>
<th>Preclinical</th>
<th>Clinical</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cardiac Rhythm</strong></td>
<td>In vitro $I_{k_r}$ In vivo QTc (ICH S7B)</td>
<td>ECGs in FIH/FIP Thorough QTc Study (ICH E14)</td>
<td>Robust ECGs in FIH $\rightarrow$ waiver of TQT?</td>
</tr>
<tr>
<td><strong>Myocardial Injury</strong></td>
<td>Histology cTnT, cTnI (dog, rat)</td>
<td>Cardiac tropinin (cTn)</td>
<td>LDH and CK lack specificity, sensitivity</td>
</tr>
<tr>
<td><strong>Acute renal tubular injury</strong></td>
<td>Histology, KIM-1, clusterin, albumin, trefoil-factor 3</td>
<td>Preclinical markers require validation in clinic</td>
<td>BUN and creatinine clearance lack specificity, sensitivity for early nephrotic damage</td>
</tr>
<tr>
<td><strong>Acute glomerular and renal tubular injury affecting reabsorption</strong></td>
<td>Histology, total protein, cystatin-C B2-microglobulin, RPA-1 (rats)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Liver Injury</strong></td>
<td>Histology, Total bilirubin (specific), ALT (sensitive), AST, ALP, prothrombin time</td>
<td></td>
<td>Need markers for DILI (e.g. micro RNAs)</td>
</tr>
<tr>
<td><strong>Testicular Toxicity</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Regulatory Action on Marketed Drugs due to DILI (1995-2010)

#### Withdrawals (US* and/or other countries+)
- troglitazone*
- bromfenac*
- trovofloxacin*
- tilbroquinol+
- pemoline+
- tetrabamate+
- ebrotidine+
- nefazodone+
- tolrestat+
- droxicam+
- niperotidine+
- chlormezanone+
- ximelegatran+
- lumaricoxib+
- gemtuzumab+

#### Boxed Warnings (US)
- lamividine
- leflunomide
- propylthiouracil
- lapatanib
- pazopanib
- sunitimib
- tenofovir
- tipranavir
- tolcapone
- bosentan
- deferasirox
- ambrisentan
- acitretin
- cytarabine
- maraviroc
- eltrombopaa
- acetaminophen (Rx)

---

*Partial List  FDA/C-Path/PhRMA HepTox Steering Committee, 15 March 2012
## Safety Biomarkers

<table>
<thead>
<tr>
<th>Safety Biomarkers</th>
<th>Preclinical</th>
<th>Clinical</th>
<th>Comment</th>
</tr>
</thead>
</table>
| **Cardiac Rhythm**                        | *In vitro* $I_{kr}$,  
*In vivo* QTc (ICH S7B)                                                         | *ECGs in FIH/FIP*  
Thorough QTc Study (ICH E14)                                                 | *Robust ECGs in FIH → waiver of TQT?*          |
| **Myocardial Injury**                     | Histology cTnT, cTnl (dog, rat)                                              | *Cardiac tropinin (cTn)*                                                   | *LDH and CK lack specificity, sensitivity*    |
| **Acute renal tubular injury**            | Histology, KIM-1,  
clusterin, albumin, trefoil-factor 3                                         | *Preclinical markers require validation* in clinic                        | *BUN and creatinine clearance lack*          |
| **Acute glomerular and renal tubular injury affecting reabsorption** | Histology, total protein, cystatin-C  
B2-microglobulin, RPA-1 (rats)                                                  | *Preclinical markers require validation* in clinic                        | *specificity, sensitivity for early nephrotic damage* |
| **Liver Injury**                          | Histology, Total bilirubin (specific), ALT (sensitive), AST, ALP, prothrombin time |                                                              | *Need markers for DILI* (e.g. micro RNAs)*   |
| **Testicular Toxicity**                   | Histology, LH,  
testosterone,                                              | Semen analysis, Inhibin-B?                                                 | *FSH inconsistent*                           |
Male Reproductive Safety – Preclinical Evaluation

- Preclinical general toxicology studies are the most frequent source of concern regarding the potential effect of a drug on the testis.
- Concern is less likely to arise from the animal fertility study (usually carried out later in development).
- Preclinical toxicology studies may demonstrate testicular histopathological abnormalities in one species or in multiple species.
- There is no single species that is best for prediction of human risk.
- Abnormalities in any species may be a cause for concern.
Testis is a Dual Organ in Function and Structure

- **Interstitial Compartment**
  - Endocrine Function
  - Leydig cell
  - Low metabolic rate
  - Fibroblast stem cells
  - Resistant to toxicity

- **Seminiferous Compartment**
  - Exocrine Function
  - Sertoli and germ cells
  - Active turnover rate
  - Spermatogonial stem cells
  - Exquisitely sensitive to toxicity
Evaluation of Spermatogenesis during Drug Development

- **Hormonal Evaluation**
  - LH
  - Testosterone
  - FSH
  - Inhibin B

- **Advantages**
  - Acceptable to subjects, no recruitment issues
  - Easily incorporated into clinical studies

- **Semen Analysis**
  - Sperm count, motility and morphology still best assessment in clinic despite challenges in obtaining good samples
Case Study: Clinical Biomarkers of Testicular Safety Risk

- Novel anti-viral drug
- 1 month oral toxicity studies in rat and dog revealed histopathological changes in the testes
- Reproductive toxicity studies in rat demonstrated ↓fertility, ↓spermatogonia, ↑morphologically abnormal sperm
- Subsequent testicular toxicity studies were conducted in mice, rats, rabbits and monkeys
- Rat was the most sensitive species; histopath changes included degeneration of spermatocytes and dilatation of seminiferous tubules
- FDA placed a partial clinical hold on development
How Do You Design a Clinical Study to Evaluate Testicular Safety?

- First, sponsor conducted a Phase I multiple dose safety study
  - PK study in a healthy subject population of vasectomized males and postmenopausal women
  - Data used to select dose for testicular safety study
- Sperm concentration (biomarker) is the most commonly used endpoint
- Define “responder” as an individual with a 50% reduction in sperm concentration
- Non-inferiority analysis used
- Study duration must include at least one spermatogenic cycle, i.e. > 90 days
Other Key Considerations

- Goal is to reduce “noise” while having sufficient numbers to obtain a statistically valid result
- Control factors that contribute to variation
  - Limit # of sites to control geographical variation
  - Limit # of laboratories to control inter-laboratory variation
  - Multiple samples per time point
  - Control period of abstinence
The Chosen Design

- Phase I, randomized, double-blind, placebo-controlled, non-inferiority, multiple oral dose study in healthy male subjects
- Number of subjects: 110
- Primary endpoint: sperm conc. at Day 95
- Semen analysis conducted at baseline Day 65, Day 95 and Day 125
- 3 samples per time point 48-hour abstinence between samples; clinic confinement during sample collection periods
- 2 clinical sites; single laboratory conducted semen analysis
- DSMB reviewed semen and laboratory safety data at Day 65, 95 and 125
Clinical Study Results

- Responder rate following drug treatment was not inferior to placebo re: semen biomarkers (sperm conc., motility and morphology)
- Drug and placebo were comparable re: endocrine biomarkers (LH, testosterone, FSH and inhibin B)

Outcomes
- 2012: FDA removed partial clinical hold
- 2015: Drug active against Ebola virus

Impact – first study of its kind to evaluate the potential for testicular toxicity early in drug development – topic of an ASCPT workshop that Malle chaired in 2013
Any Answers to Questions?

- How is early clinical research changing?
  - *More information at CPoC – fail fast, fail early*
- How good are we in predicting safety for early research and ultimately for marketed drugs?
  - *Doing better? But still not very good*
- Where are more right brain (creative) solutions needed in establishing the safety of new drug candidates in early studies in humans?
  - *Specific human clinical markers for tissue damage*
    - Validating renal markers in clinical studies
    - DILI, myocardial damage
  - *Specific marker imaging agents – functional MRI*
  - *Validation of new human CNS function - safety tests*
  - *Establishing a meaningful therapeutic index*