Genetics 101

Genes are a heredity unit coding for specific traits and characteristics passed down from parents to offspring. DNA stores this genetic information which first must be converted into a usable form; transcription is the process of creating RNA from DNA. The newly formed RNA is then used as a blue-print for protein synthesis during translation (Figure 1). Over the past couple of decades, an additional layer of complexity has been added to this central dogma of molecular biology. The once considered “junk” or non-coding regions of DNA has now been shown to code for micro-RNAs (miRNAs). miRNAs are evolutionally conserved, small RNA molecules that regulate gene expression and ultimately protein synthesis [1]. They control the amount of RNA transcript available for protein production, through complementary base pairing, miRNA bind to a specific RNA sequence which results in suppressed translation or direct targeting of the RNA for degradation [2] (Figure 1).

Application as a Biomarker

Since miRNAs are abundant in bodily fluids; blood and urine collection are practical, non-invasive manners for sampling. Circulating miRNAs are often considered as a “fingerprint” of the tissue they were derived from. For this reason they have the potential to become instrumental biomarkers reflecting the pathophysiological state of a tissue. Although still a relatively new field of study, miRNA analysis has been examined for disease diagnosis, prognosis, and evaluation of a treatment response. Circulating miRNAs are currently being used as biomarkers for cancer, cardiovascular disease, neurological disorders and other maladies [7-10]. In addition, there are several miRNAs that are associated with metabolic diseases such as insulin resistance, obesity and fatty liver disease. The following soluble miRNAs are prospective candidates for detecting early signals of drug efficacy in clinical studies.

Insulin Resistance and Type 2 Diabetes

Insulin resistance is the inability of insulin, a pancreatic hormone, to efficiently stimulate glucose uptake in peripheral tissue such as skeletal muscle, and is the hallmark of type 2 diabetes. Let-7 and miR-126 have been characterized as two key miRNAs associated with insulin resistance. Let-7 was the first miRNA identified in humans. It regulates glucose metabolism by directly targeting several members of the insulin signaling cascade [11]. Moreover, members of the Let-7 family are reduced in serum of type 2 diabetes subjects compared to healthy controls [12]. A yearlong dietary intervention significantly increased plasma Let-7b* levels 8-fold in premenopausal women [13]. Furthermore, anti-diabetic pharmacological treatment in naïve type 2 diabetes subjects showed a substantial increase in Let-7a and Let-7f levels [12]. Circulating miR-126 expression is also significantly reduced in type 2 diabetes subjects compared to control subjects [14]. Interestingly, miR-126 is associated with diabetes complications such as cardiovascular disease. To this end, miR-126 is highly expressed in heart tissue and has been shown to play a role in heart disease through regulation of angiogenesis and inflammation (reviewed in [10]).

On the other hand, miR-140-5p, miR-142-3p and miR-222 are all increased with type 2 diabetes [15], as well as morbid obesity [16]. Furthermore, a 3-month metformin treatment intervention in type 2 diabetes subjects was associated with a significant reduction in plasma miR-140-5p and miR-222, as well as increased miR-142-
Both lifestyle and pharmacological treatment of diabetes can impact subjects compared to controls [20].

miRNAs can distinguish between severity of obesity as well as diabetes, making them a versatile indicator of metabolic disease progression, which is a highly desirable element of a biomarker.

Fatty Liver Disease

Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver dysfunction associated with hepatic steatosis (fat accumulation), and nonalcoholic steatohepatitis (NASH) represents a more severe form of the disease resulting in liver inflammation and injury as well as steatosis. Currently NASH is diagnosed and a treatment response is evaluated by painful liver biopsy procedures, therefore there is imperative need for the development of a standardized non-invasive biomarker for this indication. In this respect, miR-122 expression is hepatic-specific and is the most abundant miRNA identified in the liver (reviewed in [26]). Animal studies suggest that miR-122 is a key regulator of cholesterol and triglyceride metabolism (reviewed in [27]). In humans, plasma miR-122 levels are increased in NAFLD, correlate with NASH biopsy measurements, and are able to distinguish the degree of NAFLD severity [28]. Moreover, as a liver-specific biomarker, miR-122 has also been investigated as an indicator of drug-induced liver injury [29]. Therefore, miR-122 monitoring has the potential to be extremely useful in clinical studies as a gauge of liver impairment and to ascertain a therapeutic response.

Power in Profiling

Other miRNAs of interest associated with metabolic diseases such as type 2 diabetes, obesity and NAFLD include miR-15, miR-21, miR-33, miR-34a, miR-103/107 and miR-451 [26, 27, 30, 31]. Detailed lists of miRNAs and their gene targets have been compiled into databases and online resources (e.g. miRBase [32] and miRWalk [33]). While all the miRNAs mentioned above show strong association with a metabolic disease state; miRNA profiling, a platform examining several miRNAs at once, can yield more robust results. Numerous studies report that miRNA signatures or distinct patterns appear tissue specific for various disease conditions (reviewed in [27, 30, 34]).

Quantitation of miRNA

miRNA can be extracted from a wide range of sources including whole blood, plasma, saliva, tears, urine, amniotic fluid, bronchial lavage, cerebrospinal fluid, stool specimen, cell lines, fresh tissues, and formalin-fixed paraffin-embedded (FFPE) tissues. The first step in miRNA quantitation is to select the appropriate sample as the miRNA expression varies significantly among sample sources. Moreover, the extraction site (total vs. micro-vesicle specific) can also impact the results (reviewed in [8, 21]). Contamination in serum or plasma by miRNAs from blood cells is also a significant concern. Therefore it is imperative that plasma/serum preparations be free of hemolysis.

While miRNA analysis techniques have not yet reached the same level of maturity as the most routine methods for RNA and DNA analysis, there are several existing, robust techniques available for the analysis of miRNA. The most commonly used techniques are RT-qPCR, microarrays and Next Generation Sequencing (NGS). The advantages and disadvantages of these three techniques are outlined in Table 1.

Table 1: Advantages and Disadvantages of miRNA analysis techniques

<table>
<thead>
<tr>
<th>Methodology</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-qPCR</td>
<td>Quantitative</td>
<td>Cannot identify novel miRNA</td>
</tr>
<tr>
<td></td>
<td>High sensitivity</td>
<td>Amplification required</td>
</tr>
<tr>
<td></td>
<td>Broad dynamic range</td>
<td>Specificity is dependent on primer</td>
</tr>
<tr>
<td></td>
<td>Can be highly specific when the primers are</td>
<td>design</td>
</tr>
<tr>
<td></td>
<td>designed appropriately</td>
<td></td>
</tr>
<tr>
<td>Microarray</td>
<td>High throughput multiplexing</td>
<td>Low specificity</td>
</tr>
<tr>
<td></td>
<td>Multiple vendors/platform</td>
<td>Cannot identify novel miRNA</td>
</tr>
<tr>
<td></td>
<td>Moderate sensitivity</td>
<td></td>
</tr>
<tr>
<td>NGS (Next Generation</td>
<td>Identification of new miRNA</td>
<td>High cost</td>
</tr>
<tr>
<td>Sequencing)</td>
<td>High sensitivity and specificity</td>
<td>Long run time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RT-qPCR is considered the gold standard for miRNA quantitation in a regulated environment due to its high sensitivity, specificity, and broad dynamic range [35, 36]. Prior to performing RT-qPCR analysis, it is important to isolate high quality RNA using a robust and reproducible method. The quality of total RNA should be evaluated by spectrophotometry and a microchannel-based electrophoretic cell instrument, such as Agilent Bioanalyzer and Bio-Rad Experion system. In some cases exogenous spikes of synthetic miRNAs can be added before extraction and measured in the purified RNA to monitor the quality of the extraction.
The first step in RT-qPCR is the reverse transcription of miRNA to cDNA. Reverse transcription primers designed specifically for miRNA are used for this purpose. The primers are designed to have a short single sequence complementary to the 3’ end of the miRNA, followed by a double stranded loop containing the universal primer sequence. The presence of the stem loop in the primer ensures the detection of the mature form of the miRNAs instead of their precursors. The 3’ and 5’ ends of primers are designed to complement the target miRNA and enable reverse transcription. Alternatively, miRNAs can be tailed by polyadenylation at their 3’ end. The oligo-dT primers are used for reverse transcription. Various approaches such as incorporation of locked nucleic acids (LNAs) into the primer can be used to increase specificity and sensitivity of qPCR.

One of the challenges in miRNA quantitation, regardless of the technology used, is the appropriate data normalization. A frequent approach for normalizing data is the use of invariant endogenous controls. An ideal endogenous control should exhibit minimal biological variation in the system under investigation. It should also have sufficient expression and be stable under study conditions for robust quantification. RNAs such as SS, U6, 18S etc. has been reported as normalization controls, however the justification for using them are still lacking [37].

The analytical approaches used in miRNA quantitation are still a relatively new field of study. More cross-platform confirmation and validation studies are needed to address the challenges mentioned here. The analytical aspects of miRNA profiling have a substantial impact on subsequent biological interpretations and their translational applications.

Considerations for Early Clinical Studies

The biotech industry has positioned miRNAs as an attractive therapeutic candidate through inhibition or mimicking function, as well as biomarkers for disease. Drug development programs aiming to treat a metabolic disease may benefit from the assessment of miRNAs as they are often causal to the disorder, altered in a diseased state and influenced by a therapeutic intervention. Due to their soluble nature, miRNAs are ideal biomarkers however, before including these measurements in a clinical study, the following ethical and sample collection recommendations should be considered. Since miRNA determination is a form of genetic testing, specific informed consent must be obtained for these analyses and sample retention. Furthermore, sample acquisition (fasting or fed conditions), processing (tube preservatives), and storage conditions are key considerations to maximize sample recovery and minimize variability. A laboratory subject matter expert can provide guidance on these factors as well as suggest strategic miRNAs for a particular drug development program.

Conclusion

The dawn of the “omics” field has led to comprehensive metabolic screening at the level of the genome, proteins, metabolites and now miRNAs. Several miRNAs have emerged as soluble biomarkers of metabolic diseases, and as research in this growing domain continues, it is expected that more will arise. By providing insight into that status of a specific cell or tissue, soluble miRNA biomarkers have the potential to make a significant impact in clinical research as an early signal of drug efficacy.

References