Development and Validation of LC-MS/MS Methods for the Quantification of Biomarkers Tryptophan, Kynurenine and 3-Hydroxykynurenine in Human Plasma

J. Anguizola PhD1, A. Dzerk1, C. Kafonek1, G. James1, S. Koshiba PhD2, S. Horita3, Y. Liu PhD2, and M. Mizutani PhD, D.V.M1
1Celerion, Lincoln, NE USA, 2Translational Research Unit, Japan and 3Translational Research, Kyowa Hakko Kirin Co., Ltd.
Shizuoka, Japan and 4Translational Research, Kyowa Kirin Pharmaceutical Development, Inc., NJ USA

INTRODUCTION

- Tryptophan is an essential amino acid known for its crucial role in protein synthesis and as the precursor for several biologically active compounds such as kynurenine.
- Several pathological conditions are associated with the metabolism of tryptophan and the generation of its metabolites, and are linked to the development of a variety of diseases.
- Cancer patients tend to have tryptophan concentrations lower than normal and kynurenine concentrations higher than normal due to the increasing activity of enzyme indoleamine-2,3-dioxygenase (IDO) which catalyzes the first-limiting step of tryptophan degradation along the kynurenine pathway.
- The success of this work seeks to establish reliable robust accurate methods for the quantification of tryptophan, kynurenine, and 3-hydroxykynurenine in human plasma with limits of quantitation below the endogenous concentrations found in a healthy population.
- Quantification of abnormally low endogenous concentrations in human plasma required that calibration standards and low level QC be prepared in surrogate matrix (ultrapure water or 4X charcoal stripped plasma).

RESULTS

- For 3-OH kynurenine, analysis was performed using a Waters Acquity UPLC HSS T3 (100 x 2.1 mm)
- Positive ions generated by a TurboIonSpray source were monitored in the multiple reaction-monitoring (MRM) mode.
- Separate analytical methods were developed for tryptophan/kynurenine and 3-OH kynurenine.

QC Inter-Batch Accuracy Range (% Bias)
- 7.7 to 0.0% -1.2 to -0.3%
- 6.7 to -1.3%

QC Inter-Batch Precision Range (% CV)
- 4.3 to 11.8% 2.8 to 5.1% 4.7 to 8.6%

QC Intra-Batch Precision Range (% CV)
- 1.7 to 10.9% 1.1 to 5.6% 1.7 to 16.2%

Figure 6. 3OH-Kynurenine Low Plasma QC

CONCLUSION/NOVEL ASPECT

Abnormally low concentrations of tryptophan, kynurenine and 3-hydroxykynurenine in human plasma can be measured accurately and precisely using robust and sensitive LC-MS/MS methods.

Table 1

<table>
<thead>
<tr>
<th>Level</th>
<th>Mean Basal</th>
<th>150 µM</th>
<th>500 µM</th>
<th>Mean Basal</th>
<th>150 µM</th>
<th>500 µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level +</td>
<td></td>
<td></td>
<td></td>
<td>Level +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3OH-Kynurenine Low Conc.</td>
<td>spike</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.100 µM</td>
<td>15.0 µM</td>
<td></td>
<td></td>
<td>11.30 nM</td>
<td>21.0 µM</td>
<td>29.0 µM</td>
</tr>
<tr>
<td>0.115 µM</td>
<td>15.0 µM</td>
<td></td>
<td></td>
<td>11.50 nM</td>
<td>21.1 µM</td>
<td>29.1 µM</td>
</tr>
<tr>
<td>0.230 µM</td>
<td>15.0 µM</td>
<td></td>
<td></td>
<td>11.70 nM</td>
<td>21.2 µM</td>
<td>29.2 µM</td>
</tr>
</tbody>
</table>

By utilizing a 3-period method the ratio data for tryptophan at low concentrations became reasonably acceptable even though the peak area variability increased.